References

AAT13

Nadir Akinci, Gizem Akinci, and Matthias Teschner. Versatile surface tension and adhesion for sph fluids. ACM Trans. Graph., 32(6):182:1–182:8, November 2013. URL: http://doi.acm.org/10.1145/2508363.2508395, doi:10.1145/2508363.2508395.

AIA+12

Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. Versatile rigid-fluid coupling for incompressible sph. ACM Trans. Graph., 31(4):62:1–62:8, July 2012. URL: http://doi.acm.org/10.1145/2185520.2185558, doi:10.1145/2185520.2185558.

BIT09

Markus Becker, Markus Ihmsen, and Matthias Teschner. Corotated SPH for deformable solids. In Proceedings of Eurographics Conference on Natural Phenomena, 27–34. 2009. URL: http://dx.doi.org/10.2312EG/DL/conf/EG2009/nph/027-034, doi:10.2312EG/DL/conf/EG2009/nph/027-034.

BT07

Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '07, 209–217. Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association. URL: http://dl.acm.org/citation.cfm?id=1272690.1272719.

BK15

Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA '15, 147–155. New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2786784.2786796, doi:10.1145/2786784.2786796.

BK17

Jan Bender and Dan Koschier. Divergence-free sph for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 23(3):1193–1206, 2017. URL: http://dx.doi.org/10.1109/TVCG.2016.2578335, doi:10.1109/TVCG.2016.2578335.

BKKW17

Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. A micropolar material model for turbulent sph fluids. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA '17. ACM, 2017. URL: http://doi.acm.org/10.1145/3099564.3099578, doi:10.1145/3099564.3099578.

BKWK19

Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier. Volume maps: an implicit boundary representation for sph. In Proceedings of ACM SIGGRAPH Conference on Motion, Interaction and Games, MIG '19. ACM, 2019. URL: https://dl.acm.org/doi/10.1145/3359566.3360077, doi:10.1145/3359566.3360077.

BMullerM15

Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in computer graphics. In EUROGRAPHICS 2015 Tutorials. Eurographics Association, 2015. URL: http://dx.doi.org/10.2312/egt.20151045, doi:10.2312/egt.20151045.

BMullerO+14

Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):228–251, 2014. URL: http://dx.doi.org/10.1111/cgf.12346, doi:10.1111/cgf.12346.

DCB14

Crispin Deul, Patrick Charrier, and Jan Bender. Position-based rigid body dynamics. Computer Animation and Virtual Worlds, 2014. URL: http://dx.doi.org/10.1002/cav.1614, doi:10.1002/cav.1614.

GBP+17

Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner. Approximate air-fluid interactions for sph. In Virtual Reality Interactions and Physical Simulations, 1–10. April 2017. URL: http://dx.doi.org/10.2312/vriphys.20171081, doi:10.2312/vriphys.20171081.

HWZ+14

Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, and Kun Zhou. Robust simulation of sparsely sampled thin features in sph-based free surface flows. ACM Trans. Graph., 34(1):7:1–7:9, December 2014. URL: http://doi.acm.org/10.1145/2682630, doi:10.1145/2682630.

ICS+14

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. Implicit incompressible sph. IEEE Transactions on Visualization and Computer Graphics, 20(3):426–435, March 2014. URL: http://dx.doi.org/10.1109/TVCG.2013.105, doi:10.1109/TVCG.2013.105.

IOS+14

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014. URL: http://dx.doi.org/10.2312/egst.20141034, doi:10.2312/egst.20141034.

JZW+15

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. Blue noise sampling using an sph-based method. ACM Transactions on Graphics (TOG), 34(6):1–11, 2015.

KB17

Dan Koschier and Jan Bender. Density maps for improved sph boundary handling. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 1–10. July 2017. URL: http://dx.doi.org/10.1145/3099564.3099565, doi:10.1145/3099564.3099565.

KBST19

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. Smoothed particle hydrodynamics for physically-based simulation of fluids and solids. In Eurographics 2019 - Tutorials. Eurographics Association, 2019. URL: https://interactivecomputergraphics.github.io/SPH-Tutorial, doi:10.2312/egt.20191035.

KBFernandezFernandez+21

Tassilo Kugelstadt, Jan Bender, José Antonio Fernández-Fernández, Stefan Rhys Jeske, Fabian Löschner, and Andreas Longva. Fast corotated elastic sph solids with implicit zero-energy mode control. Proc. ACM Comput. Graph. Interact. Tech., 2021.

MMuller13

Miles Macklin and Matthias Müller. Position based fluids. ACM Trans. Graph., 32(4):104:1–104:12, July 2013. URL: http://doi.acm.org/10.1145/2461912.2461984, doi:10.1145/2461912.2461984.

MMullerCK14

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified Particle Physics for Real-Time Applications. ACM Trans. Graph., 33(4):1–12, 2014. URL: http://doi.acm.org/10.1145/2601097.2601152, doi:10.1145/2601097.2601152.

PICT15

A. Peer, M. Ihmsen, J. Cornelis, and M. Teschner. An Implicit Viscosity Formulation for SPH Fluids. ACM Trans. Graph., 34(4):1–10, 2015. URL: http://doi.acm.org/10.1145/2766925, doi:10.1145/2766925.

PGBT17

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. An implicit sph formulation for incompressible linearly elastic solids. Computer Graphics Forum, 2017. URL: http://dx.doi.org/10.1111/cgf.13317, doi:10.1111/cgf.13317.

PT16

Andreas Peer and Matthias Teschner. Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Transactions on Visualization and Computer Graphics, pages 1–9, 2016. URL: http://dx.doi.org/10.1109/tvcg.2016.2636144, doi:10.1109/tvcg.2016.2636144.

SB12

Hagit Schechter and Robert Bridson. Ghost sph for animating water. ACM Trans. Graph., 31(4):61:1–61:8, July 2012. URL: http://doi.acm.org/10.1145/2185520.2185557, doi:10.1145/2185520.2185557.

SP09

B. Solenthaler and R. Pajarola. Predictive-corrective incompressible sph. ACM Trans. Graph., 28(3):40:1–40:6, July 2009. URL: http://doi.acm.org/10.1145/1531326.1531346, doi:10.1145/1531326.1531346.

TDF+15

T. Takahashi, Y. Dobashi, I. Fujishiro, T. Nishita, and M.C. Lin. Implicit Formulation for SPH-based Viscous Fluids. Computer Graphics Forum, 34(2):493–502, 2015. URL: http://dx.doi.org/10.1111/cgf.12578, doi:10.1111/cgf.12578.

WKB16

Marcel Weiler, Dan Koschier, and Jan Bender. Projective fluids. In Proceedings of the 9th International Conference on Motion in Games, MIG '16, 79–84. New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2994258.2994282, doi:10.1145/2994258.2994282.

WKBB18

Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. A physically consistent implicit viscosity solver for sph fluids. Computer Graphics Forum (Eurographics), 2018. URL: https://doi.org/10.1111/cgf.13349, doi:10.1111/cgf.13349.